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Ordering relations for q-boson operators, continued 
fraction techniques and the q-CBH enigma 

Jacob Kahielt and GLrard Duchamp 
Labaatoire d‘hfomt ique  Theorique et Programmation, lnstitut Blaise Pascal, 2 place Jussieu, 
F-7S251 Paris Cedex, France 

Received 31 March 1995, in final form 2 August 1995 

Abstract. Ordering propehes of boson operators have been very extensively studied, and 
q-analogues of many of the relevant techniques have been derived. These relations have far 
reaching physical applications and, at the same time, provide a rich and interesting source 
of Combinatorial identities and of their q-analogues. An interesting exception involves the 
transformation from symmetric to n o d  ordering, which, for conventional boson operators, can 
most simply be effected using a special case of the Campbell-Baker-Hausdorff (CBH) formula. 
TO Circumvent the lack of a suitable q-analogue of the CBH formula, two alternative procedures 
are proposed, based on a recurrence relation and on a double continued fraction, respectively. 
These procedures enrich the repertoire of techniques available in this field. For conventional 
bosons they result in an expression that coincides with that derived using the CBH formula 

1. Introduction 

The boson creation and annihilation operators at and a, that satisfy the commutation relation 
[a, at] = U Q ~  - Q ~ U  = 1, give rise to a rich and interesting ordering problem [l]. In the 
present article we shall for the most part consider operators consisting of monomials with 
an equal number-of creation and annihilation operators. Such operators are diagonal in the 
number operator basis of the Fock space F = Ilk) = (l/~@)(u?)~lO); k = 0, 1, . . .]. We 
shall distinguish between normal ordering, for which each monomial is of the form 
antinormal ordering, for which the monomials are of the form  at)^ and symmehic 
ordering, for which all operators are expressed in terms of basic elements consisting of 
averages over all the possible distinct orderings of equal numbers of creation and annihilation 
operators. In fact, it will be useful to consider the continuous s-ordering, introduced by 
Cahill and Glauber [2], which reduces to the above three types for s = 1, s = -1 and 
s = 0, respectively. 

Considerable attention has been paid to deformations of the boson commutation 
relations. The most commonly studied deformed bosons satisfy either the q-commutation 
relation (‘quommutation relation’) [a, at], = aut -quia = 1 [3] or the relation [a, at], = 
q-8 [4,5]. A is the number operator, that satisfies [a, A], = Q, [a’, fill = -at. Deformed 
bosons of the first type have in 161 been nicknamed ‘math’ bosons, and those of the second 
-type ‘phys’ bosons. 

It is rather obvious that any expression consisting of diagonal monomials can be 
transformed into an expression depending only on the number operator A = uta, by 

t Permanent address: Department of Chemistry, Technion - Israel Institute of Technology, Haifa. Israel. 
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an appropriate number of applications of the commutation relation. One immediate 
implication of this observation is that and ae(at)', both of which are diagonal in 
the Fock space, commute with one another. This provides a very transparent inductive 
proof of the identity (aut,)" = a"(at)"u" [7], whose central step is (auta)"+' = 
(uata)(a"(at)"'a") = a(a"(at)")(a~a)a" = a"+'(~+)~+'a"+l. Turbiner [7] showed, 
using the actual commutation relations, that this identity holds for a certain subset of 
deformed bosons (essentially the 'math' bosons). In fact, from the point of view proposed 
above it is obvious that Turbiner's identity holds for all kinds of deformed boson operators. 

The aim of the present study of the interrelations between the various diagonal boson 
operators is to identify routes towards the extension of these results to q-boson algebras. 
Thus, while the formulation of a general q-analogue of the Campbell-Baker-Hausdorff 
(CBH) relation appears not to be stmightforwardly feasible 181, an appropriate q-deformed 
version of the relation between exp(aat) exp(pa) and exp(pa) exp(orat) is used to generate 
the transformation between normal and antinormal orderings. A principal problem involves 
the generalization of the CBH relation between exp(aat + pa) and exp(orut) expva), that 
is the most direct means to derive the transformation from symmetric to normal ordering. 
In the absence of a corresponding q-deformed CBH formula, we develop two alternative 
procedures, involving recurrence relations and double continued fractions, respectively. 
These procedures provide a transformation from a symmetrically ordered expression into an 
expression in terms of the number operator. The normally ordered expansion can easily be 
derived from the latter form. For conventional bosons these procedures result in expressions 
that coincide with those obtained using the appropriate CBH formula, but unlike the latter 
they can easily be extended to the treatment of deformed bosons. The q-deformation of the 
CBH relation has also been considered, from very different points of view, in 19-1 11. 

This article is organized as follows. In section 2 we review the simplest type of 
transformations between differently ordered expressions, using straightforward recurrence 
relation techniques, and introduce a ( p ,  q)-boson algebra automorphism that accounts for 
some symmetries between different ordering relations. Elementary combinatorial identities 
that play a useful role in the derivation of reordering transformations are introduced where 
appropriate. We consider the 'math'-type q-deformed case, from which the conventional 
case can be easily obtained. In section 3 we present the CBH-based normal to antinormal 
and symmetric to normal transformations, and the q-analogue of the former, that uses 
a q-CBH type identity derived by McDermott and Solomon [12]. A recurrence relation 
procedure for the transformation from symmetric ordering to a number-operator expansion, 
that is applicable to both undeformed and deformed bosons, is presented in section 4, 
and a corresponding double continued fraction approach is introduced in section 5. Some 
concluding remarks, indicating desirable further effort, are made in section 6. 

J Kutriel and G Duchamp 

2. Ordering transformations via elementary recurrence relations and combinatorial 
identities 

In this section we consider the most direct and elementary approaches to the boson operator 
ordering problem. Recurrence relations between consecutive transformation coefficients of 
various types are derived and used to obtain closed form expressions for the coefficients, as 
far as possible. Whenever possible, we present the q-boson result, from which the q + 1 
limit can readily be obtained. 

Some immediate consequences of the 'math' type q-boson quommutation relation 
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The deformed Fock space is spanned by 

( U ~ ) ~ [ O ) ;  k = 0, 1 ,  2, . . . 1 

where [k] = [ k  - l],![k] and [O],! = 1. It follows that i l k )  = klk) ,  atlk) = 
m y i  T l ) ,  alk) = &lk - 1 )  and stalk) = [k],lk). Consequently, on the Fock 
space uta = [a], and aut = [a + 4. Since on the Fock space a and at are Hermitian 
conjugates of one another, the second of equations (1) is the Hermitian conjugate of the 
first. 

Some q-arithmetic relations that will be used below are 

[i i- j1, = [i] ,  + q'[ j l ,  

[i - j1, = q-j([iIq - [j] , )  = [ilq - q [ I ] ,  
i - j  . 

[i + j] ,[ i  - j ] ,  = [i]: - q i - j [ j ] i .  
We now proceed to consider various types of transformations h a t  are amenable to a 

straightforward recurrence relation formulation. 

2.1. q-number to q-normal ordering 

The recurrence relation for the transformation coefficients in the relation 

i.e. 

ck+l.E = 4'--'ek,L-l f [eIqQ,t 

was derived in [13], where the coefficients were recognized as the q-Stirling numbers of 
the second kind. The latter were originally introduced by Carlitz[l4] ana studied by Gould 
[15]. Some recent developments and generalizations are presented in [16].  

The transformation from q-number to q-normal ordering can also be obtained by noting 
that 

(at)*a*ln) = [ r z l , [ n - l l P ~ ~ ~ [ n  -k+ll,In) (3) 
to obtain the operator identity 

where (a;  4). = n:=,(l - aq'-') [171. Recalling the defining relation for the q-Stirling 
numbers of the second kind 

k 

[ X I :  =CSq(k ,e )[x l ,Ex-  1 1 9 . " [ X  -e+11, 
e=i 

equation (2) follows. 
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2.2. q-number to q-antinormal onlering 

Writing [i]$ = Eto  &.eae(at)e one obtains the recurrence relation 

Noting that h.0 = 1, the transformation coefficients can be systematically evaluated. 

2.3. q-antinumber to q-normal ordering 

Defining the antinumber operator 6 through the relation [6Is = aut = qat, + 1 we write 
[ii]; = ~ ~ o & ( a t ) e a e  and note that $, = 1. The following recurrence relation is 
obtained: 

2;+1,t = q5%&..L-l + 1e+ (6) 
From the defining relation it follows that G = A + 1, so that the antinumber operator, 

that could more simply be referred to as the shifted number operator, does not appear to 
deserve separate attention. However, comparing equations (5) and (6) we note that 

The origin of this symmetly property, and similar symmehies encountered below, is 
accounted for in the following subsection. 

2.4. A boson operator algebra automorphism and its consequences 

In the present subsection we introduce a transformation between the creation and the 
annihilation operators that will be found useful subsequently. 

Rewriting the quommutation relation in the form paat-qat, = 1, the (p. q)-number to 
( p ,  q)-antinormal and the ( p ,  q)-antinumber to (p. q)-normal recurrence relations become 

and 

where 

Under the algebra automorphism 
Q --f -at 

at + a 

q - +  P 
(7) 

the modified quommutation relation remains invariant. Under this isomorphism A -+ -6 
and ae(at)e --f (-l)C(at)ea". Applying these transformations to the (p, q)-number to 
(p. q)-antinormal or to the (p, q)-antinumber to (p, q)-normal expansions we note that 
2k.t(4, P) =~(-1) -%,JP ,  4). 
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2.5. q - m m 1  to q-number 

Writing 

we obtain 

from which the recurrence relation 

results. This is the 'wrong' way to obtain a recurrence relation for the coefficients. 
The 'right' way 

was presented in [13], yielding the recurrence relation 

?k+l.L = (Ek.e-1 - [klqck.d-k 
that, along with the initial value Zl .1  = 1, identifies the coefficients as the q:Stirling 
numbers of the first kind, s,(k,e).  Equation (9) is a dual recurrence relation for these 
q-Stirling numbers. 

Equivalently, using equation (3) along  with the defining relation for the q-Stirling 
numbers of the first kind 

k 

[ ~ l , [ ~ - l l ~ ~ ~ ~ [ ~ - k + l l ~  = ~ s , ( k , e ) [ x ] :  
O=O 

we obtain equation (8). 

2.6. q - n o d  to q-antinormal ordering 

Write 

Obviously, i0.0 = 1. 
Noting that (ut)k+luk+l = ( ~ t ) ~ [ [ a ] , a ~  = ( ~ t ) ~ u ~ [ f i  - k], we obtain 
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The inverse, q-antinormal to q-normal ordering, 

can most readily be obtained by invoking the algebra automorphism discussed in 
subsection 2.4. The latter implies that 

a relation that is easily verified directly. 
Noting that 

a'(at)'In) = [n + 1I4[n + 214 . . [n + klsln) 

we obtain 

(16) 

Applying the q-Chu-Vandermonde sum (equation 11.6 in [17]) in two different ways we 
obtain both ( 1 1 )  (with the coefficients agreeing with (13)) and (14) (with the coefficients 
agreeing with (15)). 

2.7. Consecutive transformutiom 

It is of some interest to inspect some of the consistency relations obtained by considering 
the commutativity of diagrams of the form 

(1 - ( 1  - q)[h + 114;  q)k ak(at)'=[h+ 11q[h+2]q"~[h+k]q  = 
(1 - 4)k  

a 
A - B  

\ C IB 
where A, B and C stand for diagonal expressions in different forms and a, fi  and y stand 
for the appropriate transformations, i.e. CY : a t-+ b, fi  : b H c and y : a H c, where a E A ,  
b E B and c E C. Equivalently, aa = b, bp = c and ay = c, i.e. y = 01 o p. 

As an example we consider the following. 
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Normal to number to antinormal ordering. 

i.e. 

m=C 

Other transformations of this kind appear subsequently. 

3. Exponential generating functions and the CahilI-Glauber s-ordering 

Cahill and Glauber [2]  pointed out that 
~ ( a )  = exp(aat - a*a) 

exp(aat) exp(-a*a) 

exp(-a*a)exp(aat) 
. .  

generates the symmetric, normal and antinormal orderings, respectively: 

(aut)" ( -a *a )m exp (-q) - 
n! m! n.m=O 

(-ru*a)" (aut)" m 

The symbol ((at)"a" J is the sum of the ff) monomials consisting of n factors at and m 
factors a, divided by ff). 

They introduced the s-ordered displacement operator D(u, s) = D(a)  exp(isla12) in 
terms of which they defined the s-ordered product [(at)"amJ,T via the expansion 

The s-ordered product reduces  to^ the normal, symmetric and antinormal orderings for 

For the diagonal s-ordered term [ ( ~ t ) ~ a ~ } ~  one obtains 
s = 1,  0 and -1, respectively. 

which, for the normally ordered case (s = 1) reduces to the obvious relation {(at)'ak]~ = 
( ~ t ) ~ a ' ,  and for the antinomally ordered expression yields 
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Using the transformation from normal to number ordering 

J Kutriel and G Duchmp 

we obtain 

where 

i=O 

and where the definition of the Stirling numbers of the first kind has been extended to 
include s(e, 0) 6e.o. The latter is consistent with the definition 

where the last equality implies s(e,O) = 8t.o. 

transformations. 
We now proceed to consider the q-analogues of some of the Cahill-Glauber 

3.1. q-normal to q-antinormal ordering 

The following q-deformed analogue of one special case of the CBH relation has been derived 
by McDermott and Solomon 1121 

(17) 
where [a, PI, = 0 and where a and p commute with a and at. exp,(x) = Cp"=ox'/[i]q! 
is Jackson's q-exponential [181. In the notation used by Gasper and Rahman [17] 
exp,(z) = e,((l - q)z). Note that [pa. sat] = par, [aut, @a], = 0 and @a, pa], = 0. 

exp,@) exp,(pa) = exp,(sa) exp,(-sa) exp,(aa+) 

A minor generalization of (17), i.e. 

(18) 
where [[A. B11, BI, = [ [ A ,  BI4. B11 = 0 and [A, [ B ,  Alil, = [[A, Bl4,AI1 = 0, 
was derived by Kashaev [19], citing a private communication by A Yu Volkov. The 
special case [A,B], = 0 is due to Faddeev and Kashaev [20] and was presented 
and used by Kirillov 1211. For q = 1 equation (18) reduces to exp(A)exp(B) = 
exp(B)exp(-[B, AI) exp(A). The last identity coincides with a familiar special case of 
the CBH formula, obtained when [ B ,  A] commutes with both A and B.  

Expanding both sides of (17) in a double power series in a and p (paying attention to 
the fact that these two quantities do not commute) and using the identities 

and 

exp,(A) exp,(B) = exp,(B) exp,(-[B. Aldexp,(A) 

axgr = q'epeak 

(Pa) - 4  f f s  k - -k(k+1)/2 k k 

we obtain 

For i = j this reduces to (ll), with the coefficient given by (13). 
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3.2. q-antinorinal to q-normal ordering 

Multiplying equation (17) by exp,-,(@) from both the right and the left and recalling that 
exp,(-x)exp,-l(x) = 1, cf [18], we obtain 

ex;,-, va) expp-t (ora') = exp4-, (orat) expq-, (@or) expp-x ( ~ a ) .  

Expanding in powers of or and p as in the previous subsection, we obtain 

This result agrees with equation (3.1.2) of [22], and, for i = j ,  reduces to (14) with the 
coefficient given by (15). 

3.3. The elusive q-analogue of the symmetric to n g m l  ordering transformation 

A recent study [8] pointed out  that^ a q-analogue of the general CBH formula is not 
straightforwardly derivable. This does not preclude more subtle generalizations or 
generalizations of specific types of special cases, such as the relation used in ,the preceding 
two subsections. However, we have not been able to derive a q-analogue of the relation 
between exp(orat +,Sa) and exp(orat) exp(ba), that one would need to effectthe symmetric 
to q-normal ordering transformation. The latter transformation will therefore be considered 
in the following two sections, introducing techniques that one may view as substitutes for 
this elusive q-CBH formula. 

4. A recurrence relation for symmetric to number operator ordering 

The action of the diagonal operators kk ,  (a')'~' and a'(ut)' in the Fock space can be 
written down immediately, as was done in the appropriate places above. However, this is 
not the case for the symmetrically ordered operator [ ( U ~ ) ~ Q ~ ) .  

Starting from [ n ) ~ w e  note that [ata}ln) = $(ata[n) +aut[,)), i.e. the eigenvalue of 
[uta] is obtained by averaging over the two two-step routes from In) back to In) generated 
by at, and ant, and weighted by d-4- = [n -i- 1Is and Jm.,/a = [n14, 
respectively. 

For [(at)2a2] we have to allow the six four-step diagonal routes (at)'a', ataata, afa'at, 
n(at)'a, aataut and a2(at)'. Note &at the steps are weighted horizontally, i.e. a step 
connecting In) and In + 1) in either direction is weighted by 

Wm~+, = J[max(m, m')lq + - m c ~ , ~  . 
This can also be expressed as Wn=,,+l = m, all other weights vanishing. The 
weight of a multi-step route is obtained by multiplying the weights of the steps of which 
the route consists. Therefore, the sum of the weights of the k-step routes from In) to [m) 
can be obtained recursively, summing over all the k - 1 step routes from which Im) cah be 
reached with one more step 

Note that the steps are weighted in such a way that if a route involves a node with m < 0 
its weight vanishes automatically, so that no explicit precautions need be.taken to avoid 
such routes. 
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Extracting the irrational factor 

min(m, n)],! 
in Wiz,,, we define the reduced (rational) weights U:%,,, via the relation 

It is now obvious that 

(21) 
Moreover, the leading coefficient i s  B,$i:kx.e, = ('y:'), the number of (k+e)-routes from In) 
to In + k - e ) ,  i.e. the number of terms in  a at)'^']. 

Equation (21) can be written as the operator identity 

To proceed systematically it is convenient to consider the following three distinct cases 
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that for 4 = 1 reduces to 

k(k - 1) 
( R )  - k n + -  

2 .  mn+n+k-2 - 
Similarly 

or, in the q = 1 limit 

Obtaining 

we proceed to write the two-term recurrence relation 

In the limit q = 1 we have 

m i 2 n  = 6(n2 + n + 1) 
and the recurrence relation yields 

Similarly 

etc. 

4.1. Symmetric ordering to number operator expansion 

Comparison with (21) suggests that 

Thus, from (23) or (24) we obtain { a t a )  = i?+$ and from (26) or (27) [ ( ~ t ) ~ a ~ )  = 12+A+$.  
More generally 

where 

and fm(R) is a polynomial in 1 of degree m. 
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This expression can be written in the form 

Along with the transformation from number to normal ordering it provides a relation of the 
form 

where the coefficients are easily obtained by summing over products of coefficients 
corresponding to the two constituent transformations. 

5. Continued fraction representation of the generating series for the reduced :weights 

In this section we compute the generating series 

defined f o r k  > -n. 

of (28). The results are stated in the context of the q-Weyl algebra. 

its natural grading 

We use the tool of non-commutative series which leads to a continued fraction expression 

Let V be a vector space over a field k with basis le,) n = 0, 1, . . . and equipped with 

V = &aV, with V. :=ken V-,-I := (0) for n > 0 
and f, g two linear operators in V of degrees - 1 ,  +I,  respectively. That is 

for n 2 0 fled := 0 f lek+]) = uk+1led sled := B u l s + d .  
Consider the words in f, g: 

w(f,g) := fPlg4'f"g" ... f " g "  

the degree of such an operator is 

the reader to [23] or [24]. 

( q k  - p k ) .  Obviously, V is a generalized Fock space. 
We recall here the basic properties of non-commutative series and, for details, we refer 

Let A := {U, U} be a two letter alphabet. The set of finite sequences (called words) 

XlXZ. ' ' x, x i e A  rich' 

is the free monoid generated by A and denoted A*. The product law of this monoid is the 
concatenation of sequences 

X1.Q.. .x,.y1yz. .. ym := X , X 2 '  "X"YIY2. "ym 

Every mapping f : A -+ M ( M  being a monoid) extends uniquely as a morphism of 
monoids 7 : A" + M by 

j(xixz...x,) := f(xl)f(xz)...f(x.). 
A submonoid M c A" need not be free, but always has a minimal set of generators B ( M ) .  
In case M is free, B ( M )  is called the base or code of M and we have the identity between 
non-commutative power series 

1 
P E M  C w = =  
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where C := CrUeBcM) w (see [=I). The expression 1/(1 - C) = Cnpo C" will be denoted 
C* in what follows. 

We consider the two morphisms x : A* + Z, p : A* --+ Endg'(V) defined by 

x(u)  = -1 n(u) = 1 p(u) = f @(U) = g . 
The extensions of K and p from A to A' are defined according to the laws of the monoids 
involved. Thus, the extension of K is additive, i.e.. n(wlw2) = n(w1) + x ( w ~ ) ,  whereas, 
the extension of  p is multiplicative, i.e. p ( w ~ w z )  = p(w1)p(w2).  Hence, x(w) is equal to 
the difference between the number of appearances of the letter U and those of the letter U 
in the word w, and p(w) is a product of the operators f and g ordered according to the 
ordering of U and U in w. 

One has, for w E A' 

p(w) E Endx'wu'(V) (30) 
so that, if a(w)~= k, we have p(w) . e ,  E Vn+k. As previously, w:?+.+~ is defined by 

and we consider the generating series 
m 

Tn+n+X = z t i @ : i n + k .  
i=O 

We claim that rn+.+k can be developed as a product of continued fractions, this property 
being inherited from the submonoid x-'(O) that consists of words in which U and U appear 
an equal number of times. Every word in x-'(O) can be written as a unique product of 
words belonging to the base D .  A word belongs to D iff it cannot be partitioned into 
products of factors that contain an equal number of U and U factors. 

Let us recall the following basic facts. 

Proposition 5.1. 

D = Iwlx(w) = 0, VWl. wz : w = w1wz. W I  # 1, w2 # 1 
(ii) If we set 

D+ = {wlx(w) = 0, VWl, wz : w = w1w2, w1 ~f 1 ,  w2 # 1 ==+ n(w,) > 0) 

D- = Iwlx(w) = 0, Vw1, wz : w = w,wz, WI + 1 ,  w2 # 1 ==+ K(W1) < 0) 

(i) x-'(O) is a free submonoid of A* with base 

a(w1) + 0) (32) 

then D = D+ UD- and 
D+ = U (-) 1 U D- = U (-) 1 U .  

1-D+ 1 - D -  (33) 

 proof: These facts are well known. The submonoid &(O) being the preimage of  unit by 
a morphism, is free (see, for example, [24], ch IV.5). U 

Comment. It may be useful to note that by representing U, U as arrows directed to the right 
and up or down (say, U + (1 , l )  and U -+ (1, -I)), the words in D+ are represented in 
terms of sequences of arrows, joined consecutively tail to head, that are always above some 
horizontal baseline at which they begin and terminate. Similarly, D- consists of  words that 
are represented by sequences of arrows that are always below that same baseline. 
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It follows from proposition 4.1 that n-l(O), as a series, is a double continued fraction. 
More generally, let (d*)k := d ( k )  = (wlx(w) = k], and define the series F:; F; by 

Fze, := tl"'p(w) .e. 
W€D; 

then we have the following theorem. 

Theorem 5.2. (i) If k > 0, one has 

(d*)r = (41u)'D" = D * ( u D ; ) ~ .  

I f k c O  

(d*)k = (D;u)-'D* = D*(uDl)-k 

(ii) F: admits the following continued fraction representations 

1 = -, 
1 

F,' = 
t2ffn+IB.+1 1 - E$ 

1 -  
t2an+2B.+2 1- 

Z2ffJ2+3Bn+3 1- I - . . .  

2 1- 
t a.-IBn-l 1 -  

t2ffn-2B"-2 
I - . . .  I -  

(34) 

(35) 

(iii) For F, we get the form of a double continued fraction representation 
1 

1 -E: - E ; .  
F, = 

(iv) If k > 0, we have 

I f k G O  
-k-1 -x 

Tn+=+k = f-kF,+k n F L ,  = t-'F, n FLi 
i=o ;=I 

Notice that F,- is a finite continued fraction. 

As a particular case we get the q-Weyl algebra. 

(36) 

(37) 
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Corollary 5.3. For the q-Weyl algebra (01. = ,% = ([n] , ) f )  one has 

I - . . .  
In particular, for n = 0 and q = 1 (the classical Weyl algebra) we get 

m 
= 1 +C(Z- l ) ! ! t %  1 

f 2  k=1 
Fo(1) = 

2t2 
1- 

3t2 
1 -  

1 - -  I - . . .  

i.e. mi:; = (UC - I)!!. 

An example of computation 

Let us first compute the coefficient of (28). ( O J ~ ~ ~ + ~ - ~ ) ,  for the case of the classical Weyl 
algebra. Here 

where (T ,  t") stands for 'the coefficient oft" in the series T' (see [23]): Then 

( k )  
@n-"+k-2 = ( T n - m f k - 2 ,  t k )  

so one has just to compute modt3. But 
k-2 k-2 

F, n ( I  + ( n  + n + 1)~') n (I + (n + i + ]It2) m d t 3  
id i=l 

then, we obtain 

k-2 k(k - 1) 

i=l 

(k )  - n + n + 1 + x ( n  + i  + 1) = k n  + - 
2 wn-n+k-2 - 

which is equation (23). Similarly 

and, again, one has just to compute modt3. Here, we use the formula 

(k )  k 
mn-+.-k+2 = (Tn-+n-k+Z. 

However 
k-2 k-2 

F , n F L i  ~ ( l + ( n + n + l ) ~ 2 ) ~ ( l + ( n - i ) t ' )  modt3 
i=I i=l 

hence 
k-1 

w,,-.-~+~ ( k )  = x ( n  + 1 - i) = k (n  - 7) 
i=O 
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which is equation (24). Equations (25)-(27) can also be recovered with this technique. As 
a further illustration we show that 

J Kaniel and G Duchamp 

1-  - 
1 - t21n + 21 1 - A n  - 11 

4 5 - = 1 + (2n + l) tZ + ((-n - I)(-n - 2) - n(-n + 1) + (-2n - 1))t modt 

The coefficient of t4  is 6nz + 6n + 3, in agreement with equation (25). 

6. Conclusions 

In the present article the boson and q-boson ordering transformations are investigated as an 
exciting common ground of physics and combinatorics. The richness and variety of paths 
that are at our disposal in this context is displayed, with an emphasis on an appreciation 
of the interrelations between various transformations and between various techniques. The 
transformation from symmetric to normal ordering, which, for conventional boson operators, 
can most simply be effected using a special case of the CBH formula, stands out as a source 
of distinct difficulties when considered with respect to q-boson operators. To circumvent the 
lack of a suitable q-analogue of the CBH formula, two alternative procedures are presented, 
based on a recurrence relation and on a double continued fraction, respectively. These 
procedures enrich the repertoire of techniques available in this field. 

It is appropriate to point out, in conclusion, that the q-deformed boson symmetric 
ordering is a crucial element in the development of a q-deformed Wigner representation. In 
fact, the structure of the results obtained in sections 4 and 5 should be carefully examined in 
order to uncover hints of further simplification that may possibly be achieved by redefining 
the notion of symmetric ordering for q-bosons. The most likely and natural revision should 
allow for q-weighting of the various terms in the symmetrically ordered boson operator. 
We hope to return to these considerations in the future. 
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